RAG (检索增强生成)
LLM 的知识仅限于它已经训练过的数据。 如果你想让 LLM 了解特定领域的知识或专有数据,你可以:
- 使用 RAG,我们将在本节中介绍
- 用你的数据微调 LLM
- 结合 RAG 和微调
LLM 的知识仅限于它已经训练过的数据。 如果你想让 LLM 了解特定领域的知识或专有数据,你可以:
一些 LLM 除了生成文本外,还可以触发操作。
有一个被称为”工具”或”函数调用”的概念。 它允许 LLM 在必要时调用一个或多个可用的工具,通常由开发者定义。 工具可以是任何东西:网络搜索、调用外部 API 或执行特定代码片段等。 LLM 实际上不能自己调用工具;相反,它们在响应中表达调用特定工具的意图(而不是以纯文本形式响应)。 作为开发者,我们应该使用提供的参数执行这个工具,并将工具执行的结果反馈回来。
例如,我们知道 LLM 本身在数学计算方面并不擅长。 如果您的用例涉及偶尔的数学计算,您可能希望为 LLM 提供一个”数学工具”。 通过在请求中向 LLM 声明一个或多个工具, 如果它认为合适,它可以决定调用其中一个工具。 给定一个数学问题和一组数学工具,LLM 可能会决定为了正确回答问题, 它应该首先调用提供的数学工具之一。
more >>到目前为止,我们一直在介绍底层组件,如 ChatLanguageModel、ChatMessage、ChatMemory 等。 在这个层面上工作非常灵活,给予您完全的自由,但也迫使您编写大量的样板代码。 由于 LLM 驱动的应用程序通常不仅需要单个组件,还需要多个组件协同工作 (例如,提示模板、聊天记忆、LLM、输出解析器、RAG 组件:嵌入模型和存储) 并且经常涉及多次交互,协调所有这些组件变得更加繁琐。
我们希望您专注于业务逻辑,而不是低级实现细节。 因此,LangChain4j 中目前有两个高级概念可以帮助您:AI 服务和链。
more >>LangChain4j 的目标是简化将 LLM 集成到 Java 应用程序中的过程。
具体方式如下:
LangChain4j 始于 2023 年初 ChatGPT 热潮期间。 我们注意到与众多 Python 和 JavaScript LLM 库和框架相比,缺少 Java 对应物, 我们必须解决这个问题! 虽然我们的名字中有”LangChain”,但该项目是 LangChain、Haystack、 LlamaIndex 和更广泛社区的想法和概念的融合,并加入了我们自己的创新。
more >>ElasticSearch是面向文档的,与关系型数据库对比如下
| 关系型数据库 | es |
|---|---|
| 数据库(databases) | 索引(indices) |
| 表(tables) | types |
| 行(rows) | documents |
| 字段(columns) | fields |
在使用MybatisPlus以后,基础的Mapper、Service、PO代码相对固定,重复编写也比较麻烦。因此MybatisPlus官方提供了代码生成器根据数据库表结构生成PO、Mapper、Service等相关代码。只不过代码生成器同样要编码使用,也很麻烦。
这里推荐大家使用一款MybatisPlus的插件,它可以基于图形化界面完成MybatisPlus的代码生成,非常简单。
tag:
缺失模块。
1、请确保node版本大于6.2
2、在博客根目录(注意不是yilia根目录)执行以下命令:
npm i hexo-generator-json-content --save
3、在根目录_config.yml里添加配置:
jsonContent:
meta: false
pages: false
posts:
title: true
date: true
path: true
text: false
raw: false
content: false
slug: false
updated: false
comments: false
link: false
permalink: false
excerpt: false
categories: false
tags: true